

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Synthesis of 5-(perfluoroalkylmethyl)-1,3-dioxolan-4-ones

Ikram Chehidi^{a,*}, Abaccar Ould Amanetoullah^a, Mohamed Moncef Chaabouni^{a,b}, Ahmed Baklouti^a

^a Faculty of Sciences of Tunis, Department of Chemistry, Laboratory of Structural Organic Chemistry, Campus Universitaire, 2092 El Manar, Tunis, Tunisia ^b Ecole Supérieure des Industries Alimentaires, 58, Avenue Alain Savary, 1003 Tunis, Tunisia

ARTICLE INFO

ABSTRACT

Article history: Received 30 August 2009 Received in revised form 6 October 2009 Accepted 7 October 2009 Available online 6 November 2009

Keywords: F-Alkyl α-Hydroxy acid 1,3-Dioxolan-4-one Condensation

1. Introduction

1,3-Dioxolan-4-ones are attracting a growing interest due to their use as precursors to a variety of synthetic targets. They have served as substrates for the total synthesis of (S)-oxybutynin [1], eicosanoids [2], beta lactams [3], a muscarinic receptor antagonist [4] as well as in the synthesis of substituted tetrahydrofurans [5], aldols and various kinds of alcohols [6–8]. 1,3-Dioxolan-4-ones are generally prepared by the acid or Lewis acid catalysed condensation of an α -hydroxy carboxylic acid with an aldehyde or ketone [9]. Ferrett et al. have reported the synthesis of substituted 5-phenyl-1,3-dioxolan-4-ones under microwave-assisted solvent-free conditions [10]. More recently, substituted 1,3-dioxolan-4-ones were prepared by an intramolecular cyclisation of α -methylallyloxy carboxylic acids, using Cu(OTf)₂ or Al(OTf)₃ as catalysts [11].

In a previous work, we have reported the synthesis of *F*-alkyl α -hydroxy acids by oxidative ring opening reaction of *F*-alkyl oxiranes [12]. In the present work, we describe the condensation of these acids with carbonyl compounds to obtain *F*-alkyl-1,3-dioxolan-4-ones. As for 5-alkyl-1,3-dioxolan-4-ones [13–16], the new *F*-alkylated dioxolanones may prove to be useful intermediates for the synthesis of *F*-alkylated analogues of natural dioxanones.

2. Results and discussion

The *F*-alkylated 1,3-dioxolan-4-ones have been prepared via direct acid catalysed cyclisation reaction of *F*-alkyl α -hydroxy

* Corresponding author. E-mail address: ichehidi@yahoo.com (I. Chehidi). 1,3-dioxolan-4-ones. When BF_3 , OEt_2 was used as the catalyst, the condensation products were obtained in moderate to good yields and the "cis" isomers are largely favoured, while with HOTs/H₂SO₄ as catalyst, poor yields and lower stereoselectivities were observed. © 2009 Elsevier B.V. All rights reserved.

Acid catalysed condensation of F-alkyl α -hydroxy acids with simple aldehydes or ketones gave F-alkyl

acids with aldehydes or ketones (Scheme 1). The reaction has been performed using two methods:

- *Method A*: the acid catalyst is the mixture TsOH/H₂SO₄ and the use of solvents such as benzene, toluene or dioxane which dissolve the starting acids at high temperature (reflux) is required. As a consequence, the polymerisation reaction may be important and volatile carbonyl compounds were not appropriate for the condensation reaction.
- *Method B*: the dissolution of *F*-alkyl acids in a diethyl ether solution of BF₃,OEt₂ occurs at room temperature, the polymerisation reaction decreased considerably and the yields were better (Table 1).

Comparison of the results obtained with both methods (Table 1) shows that method B is preferred. It ensures higher selectivity and good yields. Entries 1 and 2 in Table 1 gave the highest selectivity. This may be explained, as expected, by the use of less bulky aldehydes, whilst the lowest selectivity is observed with the bulkiest groups (i.e. Ph and C_6F_{13}) which would increase the ratio of the trans isomer.

The *F*-alkyl 1,3-dioxolan-4-ones were obtained as a mixture of cis and trans isomers (see Table 1). As for non-fluorinated 1,3-dioxolan-4-ones [10,11], the cis isomer of *F*-alkyl 1,3-dioxolan-4-ones **3** was always favoured. The cis/trans ratio and assignments were determined from relative signal intensities and chemical shifts of H-(2), H-(5) or substituent signals on C-(5) and C-(2) observed in ¹H NMR spectra as shown in Table 2.

3. Experimental

F-Alkyl α -hydroxy acids were prepared from 3-*F*-alkyl-1,2epoxypropanes [12]. IR spectra were obtained using a Perkin-

^{0022-1139/\$ –} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2009.10.006

Scheme 1. Synthesis of F-alkyl 1,3-dioxolan-4-ones (3).

Elmer FT-PARAGON 1000 PC. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Brucker AC 300 instrument. Chemical shifts were reported in ppm from external C_6F_6 for ¹⁹F and from internal TMS for ¹H and ¹³C. HRMS spectra were obtained using MAT 95 SBE instrument. Melting points were determined using Electrothermal IA. 9000 series II and are uncorrected.

3.1. General procedure for the synthesis of F-alkyl 1,3-dioxolan-4-ones 3(c-g) by method A

0.01 mol of the carbonyl compound **1** was added to a solution of 5 mmol of the *F*-alkyl-2-hydroxy acid **2** in 25 mL of benzene. The

reaction mixture was heated under reflux, and 0.01 g of p-toluene sulfonic acid and 0.1 mL of concentrated H₂SO₄ were added. Water was removed by azeotropic distillation using a Dean-Stark apparatus. The mixture was refluxed for 12 h to complete the reaction and then cooled to room temperature. The reaction mixture was neutralised with 10% aqueous Na₂CO₃ solution. The solution was extracted three times with 30 mL portions of diethyl ether and washed several times with water. The combined organic extracts were dried over anhydrous Na₂SO₄. After the evaporation of solvent under reduced pressure, the crude product was purified by flash chromatography (SiO₂, Et₂O/petroleum ether, 30:70) and distilled under reduced pressure or recrystallised to give products **3**.

Table 1

Synthesised F-alkyl 1,3-dioxolan-4-ones (3).

Entry	Reagents	Product	Method	Time (h)	Yield (%) ^a (cis/trans)
1	1a+2a		В	1	68 (96/4)
2	1a+2b		В	2	65 (96/4)
3	1b+2a	C_6H_5 O C_6I_{13} B_{3b}	A	12	45 (54/46)
		$H = 0^{-1} \sqrt{C_4 \Gamma_9} 3c$			
4	1b + 2b	C_6H_5 C_6F_{13} H	A	12	45 (52/48)
			В	2	83 (66/34)
5	1c+2b	$ \begin{array}{c} \text{iPr} \\ \text{H}_{3}\text{C} \\ \end{array} \\ \begin{array}{c} \text{O} \\ \text{O} \\ \end{array} \\ \begin{array}{c} \text{O} \\ \text{C}_{6}\text{F}_{13} \\ \textbf{3e} \end{array} \\ \begin{array}{c} \text{3e} \end{array} $	A	12	50 (72/28)
6	1d+2a	$H \to 0 \to 0 \to 0$ C_4F_9 3f	B A	1 12	71 (84/16) 55 (87/13)
7	1d + 2b	$H \rightarrow C_6 F_{13}$	A	12	57 (65/35)

^a Yields obtained on isolated products.

Table 2

Chemical shifts (δ H-(2) and δ H-(5)) and coupling constants ${}^{4}J_{H2}$ H5.

$$\begin{array}{c} 3 \\ R^{1} \\ R^{2} \\ 2 \\ 1 \\ H \end{array} \begin{array}{c} 3 \\ -5 \\ R_{F} \end{array}$$
 3 a-g

R _F	R ¹	R ²	δH(2) ppm		δH(5) ppm	1	⁴ J _{H2 H5} (Hz)	cis/trans (%)
			$\delta_{ m cis}$	$\delta_{ m trans}$	$\delta_{ m cis}$	$\delta_{ m trans}$		
C ₄ F ₉	CH ₃	Н	5.70	5.90	4.65	4.80	1.0	96:4
C ₆ F ₁₃	CH ₃	Н	5.65	5.85	4.60	4.75	0.9	96:4
C ₄ F ₉	C ₆ H ₅	Н	6.55	6.75	4.93	4.90	1.0	54:46
C ₆ F ₁₃	C ₆ H ₅	Н	6.75	6.60	4.65	4.50	1.0	52:48
C ₆ F ₁₃	CH ₃	iPr	-	-	4.75	4.73	-	72:28
C_4F_9	iPr	Н	5.40	5.50	4.65	4.80	1.0	87:13
C ₆ F ₁₃	iPr	Н	5.40	5.50	4.65	4.70	1.0	85:15

 δ_{cis} , δ_{trans} : relative to cis (major) and trans (minor) diastereomers, respectively.

⁴*J*: relative to the cis (major) isomer.

3.2. General procedure for the synthesis of F-alkyl1,3-dioxolan-4-ones 3(a,b,d,e) by method B

To a solution of 2.5 mmol of 3-*F*-alkyl-2-hydroxy acid **2** in 3.5 mL of anhydrous diethyl ether and 23 mmol of **1** in 2.5 mL of the same solvent was added 0.5 mL (4.3 mmol) of Et_2O,BF_3 and the reaction mixture was stirred for 2 h at room temperature. The mixture was dissolved in 100 mL of diethyl ether, extracted with 50 mL of 10% CH₃COONa and washed several times with water. The ether layer was then dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo*. The crude product was purified by flash chromatography (SiO₂, Et₂O/petroleum ether, 30:70) and distilled under reduced pressure or recrystallised to give products **3**.

3.2.1. 5-Perfluorobutylmethyl-2-methyl-1,3-dioxolan-4-one (3a)

Method B, Yield: 68%; colourless oil; bp: 47 °C/0.3 mmHg; IR (CHCl₃): ν (cm⁻¹) 1798 (C=O); ¹H NMR (CDCl₃): δ 1.60 (d, 3H, CH₃, ³J_{HH} = 5.1 Hz, (cis)), 1.63 (d, 3H, CH₃, ³J_{HH} = 4.9 Hz, (trans)), 2.4–2.9 (m, 2H, CH₂), 4.65 (m, 1H, H-(5), (cis)), 4.8 (m, 1H, H-(5), (trans)), 5.70 (qd, 1H, H-(2), ⁴J_{HH} = 1 Hz, (cis)), 5.90 (qd, 1H, H-(2), (trans)); ¹³C NMR (CDCl₃): δ 171.38 (C=O, (M)), 171.20 (C=O, (m)), 125–105 (C₄ F₉), 103.2 (C-(2), (m)), 102.6 (C-(2), (M)), 69.1(C-(5), (M)), 67.45 (C-(5), (m)), 32.0 (t, CH₂), 20.6(CH₃, (m)), 19.7 (CH₃, (M)); ¹⁹F NMR (CDCl₃): 80.41 (m, 3F, CF₃), 49.9–47.48 (AB, 2F, CF₂(α)), 37.27 (m, 2F, CF₂(β)), 35.63 (m, 2F, CF₂ (ω)); HRMS (EI): M⁺ calculated 334.025, found 334.0243.

3.2.2. 5-Perfluorohexylmethyl-2-methyl-1,3-dioxolan-4-one (3b)

Method B, Yield: 65%; colourless oil; bp: 70 °C/0.3 mmHg; IR (CHCl₃): ν (cm⁻¹) 1794 (C=O); ¹H NMR (CDCl₃): δ 1.57 (d, 3H, CH₃, ³J_{HH} = 5.1 Hz, (cis)), 1.60 (d, 3H, CH₃, ³J_{HH} = 4.9 Hz, isomer (trans)), 2.4–2.9 (m, 2H, CH₂), 4.60 (m, 1H, H-(5) (cis)), 4.75 (m, 1H, H-(5), (trans)), 5.65 (qd, 1H, H-(2), (cis)), 5.85 (qd, 1H, H-(2), ⁴J_{HH} = 1 Hz, (trans)), ¹³C NMR (CDCl₃): δ 171.4 (C=O, isomer (M)), 171.20 (C=O, (m)), 125–105 (C₆ F₁₃), 103.24 (C-(2), (m)), 102.61 (C-(2), (M)), 69.10 (C-(5), (M)), 67.46 (C-(5), (m)), 32.24 (t, CH₂, ³J_{CF} = 21.6 Hz, (M)), 20.65 (CH₃-(2), (m)), 19.75 (CH₃-(2), (M)); ¹⁹F NMR (CDCl₃): δ 80.67 (m, 3F, CF₃), 48.8–48.24 (AB, 2F, CF₂(α)), 39.82 (m, 2F, CF₂), 38.74 (m, 2F, CF₂), 38.17 (m, 2F, CF₂), 35.38 (m, 2F, CF₂); HRMS (EI): M⁺ calculated 434.0187, found 434.0181.

3.2.3. 5-Perfluorobutylmethyl-2-phenyl-1,3-dioxolan-4-one (3c)

Method A, Yield: 45%; white solid; mp (CHCl₃): 89 °C; IR (CHCl₃): ν (cm⁻¹) 1798 (C=O); ¹H NMR (CDCl₃): δ 2.6–3.0 (m, 2H,

CH₂), 4.90 (m, 1H, H-(5), (cis)), 4.93 (m, 1H, H-(5), (trans)), 6.55 (d, 1H, H-(2), ${}^{4}J_{HH} = 1.06$ Hz, (cis)), 6.65 (d, 1H, H-(2), (trans)), 7.51 (m, 5H, C₆H₅); 13 C NMR (CDCl₃): δ 170.0 (C=O), 135–125 (C₆H₅), 125–105 (C₄ F₉), 103.81 (C-(2)), 69.34 (C-(5)), 33.0 (t, CH₂, ${}^{3}J_{CF} = 21.6$ Hz); 19 F NMR (CDCl₃): δ 83.14 (m, 3F, CF₃), 51.44–51.05 (AB, 2F, CF₂(α)), 39.89 (m, 2F, CF₂), 38.26 (m, 2F, CF₂); HRMS (EI): M⁺ calculated 396.0407, found 396.0416.

3.2.4. 5-Perfluorohexylmethyl-2-phenyl-1,3-dioxolan-4-one (3d)

Method B, Yield: 83%; white solid; mp (CHCl₃): 115 °C; IR (CHCl₃): ν (cm⁻¹) 1802 (C=O); ¹H NMR (CDCl₃): δ 2.4–3.0 (m, 2H, CH₂), 4.65 (m, 1H, H-(5), (cis)), 4.97 (m, 1H, H-(5), (trans)), 6.57 (s, 1H, H-(2), (cis)), 6.60 (s, 1H, H-(2), (trans)), 7.56 (m, 5H, C₆H₅); ¹³C NMR (CDCl₃): δ 170.5 (C=O); 135–125 (C₆H₅); 125–105 (C₆F₁₃); 103.85 (C-(2)); 69.36 (C-(5)), 33.15 (t, CH₂, ³J_{CF} = 21.0 Hz); ¹⁹F NMR (CDCl₃): δ 83.15 (m, 3F, CF₃), 51.52–50.70 (AB, 2F, CF₂(α)), 42.27 (m, 2F, CF₂), 41.21 (m, 2F, CF₂), 40.50 (m, 2F, CF₂), 37.88 (m, 2F, CF₂); HRMS (EI): M⁺ Calculated 496.0344, found 496.0333.

3.2.5. 5-Perfluorohexylmethyl-2-isopropyl-2-methyl-1,3-dioxolan-4one (**3e**)

Method B, Yield: 71%; colourless oil; bp: 71 °C/0.2 mmHg; IR (CHCl₃): ν (cm⁻¹) 1797 (C=O); ¹H NMR (CDCl₃): δ 1.02 (dd, 6H, 2 × CH₃, ³J_{HH} = 6.9 Hz, (cis)), 1.03 (dd, 6H, 2 × CH₃, ³J_{HH} = 6.8 Hz, (trans)), 2.03 (septuplet, 1H, H-iPr), 2.3–2.9 (m, 2H, CH₂), 4.62 (m, 1H, H-(5), (cis)), 4.73 (m, 1H, H-(5), (trans)); ¹³C NMR (CDCl₃): δ 171.34 (C=O, (M)), 171.23 (C=O, (m)), 125–105 (C₄ F₉), 108.38 (C-(2), (M)), 108.08 (C-(2), (m)), 68.79 (C-(5), (M)), 67.9 (C-(5), (m)), 32.39 (t, CH₂, ²J_{CF} = 21.4 Hz, (M)), 31.73 (CH₃, (M)), 15.45 (CH₃); ¹⁹F NMR (CDCl₃): δ 80.47 (m, 3F, CF₃), 48.91–48.0 (AB, 2F, CF₂ (α)), 39.76 (m, 2F, CF₂), 38.68 (m, 2F, CF₂), 38.12 (m, 2F, CF₂), 35.29 (m, 2F, CF₂); HRMS (EI): M⁺ calculated 476.0656, found 476.0648.

3.2.6. 5-Perfluorobutylmethyl-2-isopropyl-1,3-dioxolan-4-one (3f)

Method A, Yield: 55%; colourless oil; bp: 40 °C/0.2 mmHg; IR (CHCl₃): ν (cm⁻¹) 1798 (C=O); ¹H NMR (CDCl₃): δ 1.02 (d, 6H, 2 × CH₃, ³*J*_{HH} = 6.7 Hz, (cis)), 1.03 (d, 6H, 2 × CH₃, ³*J*_{HH} = 6.8 Hz, (trans)), 2.05(septuplet, 1H, CH), 2.3–2.9 (m, 2H, CH₂), 4.62 (m, 1H, H-(5), (cis)), 4.80 (m, 1H, H-(5), (trans)), 5.37 (dd, 1H, H-(2), ⁴*J*_{HH} = 1.1 Hz, (cis)), 5.48 (dd, 1H, H-(2), ⁴*J*_{HH} = 1.1 Hz, (trans)); ¹³C NMR (CDCl₃): δ 171.34 (C=O, (M)), 171.23 (C=O, (m)), 125–105 (C₄ F₉), 108.38 (C-(2), (M)), 108.08 (C(2), (m)), 68.79 (C-(5), (M)), 67.79 (C-(5), (m)), 32.39 (t, CH₂, ²*J*_{CF} = 21.4 Hz, (M)), 31.73 (CH), 15.45 (CH₃); ¹⁹F NMR (CDCl₃): δ 80.61 (m, 3F, CF₃), 48.8–48.05 (AB, 2F,

CF₂ (α)), 37.35 (m, 2F, CF₂), 35.71 (m, 2F, CF₂); HRMS (EI): M⁺ Calculated 362.0564, found 362.0573.

3.2.7. 5-Perfluorohexylmethyl-2-isopropyl-1,3-dioxolan-4-one (**3***q*)

Method A, Yield: 57%; colourless oil; bp: 71 °C/0.3 mmHg; IR (CHCl₃): ν (cm⁻¹) 1798 (C=O); ¹H NMR (CDCl₃): δ 1.02 (d, 6H, 2 × CH₃, ³J_{HH} = 6.8 Hz, (cis)), 1.03 (d, 6H, 2 × CH₃, ³J_{HH} = 6.7 Hz, (trans)), 2.05 (septuplet, 1H, CH), 2.3–2.9 (m, 2H, CH₂), 4.63 (m, 1H, H-(5), (cis)), 4.73 (m, 1H, H-(5), (trans)), 5.36 (dd, 1H, H-(2), ⁴J_{HH} = 1.1 Hz, (cis)), 5.48 (dd, 1H, H-(2), ⁴J_{HH} = 1.1 Hz, (trans)); ¹³C NMR (CDCl₃): 171.35 (C=O, (M)), 125–105 (C₄ F₉), 108.38 (C-(2), (M)), 108.10 (C-(2), (m)), 68.79 (C-(5), (M)), 67.79 (C-(5), (m)), 32.80 (t, CH₂, ²J_{CF} = 21.3 Hz, (M)), 30.18(CH), 16.2 (CH₃); ¹⁹F NMR (CDCl₃): δ 80.51 (m, 3F, CF₃), 48.90–48.21 (AB, 2F, CF₂ (α)), 39.73 (m, 2F, CF₂), 38.65 (m, 2F, CF₂), 38.11 (m, 2F, CF₂), 35.31 (m, 2F, CF₂); HRMS (EI): M⁺ calculated 462.0500, found 462.0513.

Acknowledgment

The authors would like to thank Dr. M A Sanhoury, MRSC of the Department of Chemistry, Faculty of Sciences of Tunis for technical assistance.

References

- [1] P.T. Grover, N.N. Bhongle, S.A. Wald, C.H. Senanayake, J. Org. Chem. 65 (2000) 6283.
- [2] B. Heckmann, C. Mioshowski, S. Lumin, J.R. Falek, S. Wei, J.H. Capdevilla, Tetrahedron Lett. 37 (1996) 1425.
- [3] (a) G. Barbaro, A. Battaglia, A. Guerrini, C. Bertucci, Tetrahedron: Asymmetry 8 (1997) 2527;
- (b) G. Barbaro, A. Battaglia, A. Guerrini, J. Org. Chem. 64 (1999) 4643.
- [4] T. Mase, I.N. Houpis, A. Akao, I. Dorsiotis, K. Emerson, T. Hoang, T. Lida, T. Itoh, K. Kamei, S. Kato, Y. Kato, M. Kawasaki, F. Lang, J. Lee, J. Lynch, P. Maligres, A. Molina, T. Nemoto, S. Okada, R. Reamer, J.Z. Song, D. Tschaen, T. Wada, D. Zewge, R.P. Volante, P.J. Reider, K. Tomimoto, J. Org. Chem. 66 (2001) 6775.
- [5] N.A. Petasis, S.-P. Lu, J. Am. Chem. Soc. 117 (1995) 6394.
- [6] S.H. Mashraqui, R.M. Kellog, J. Org. Chem. 49 (1984) 2513.
- [7] B. Heckmann, C. Miokowski, R.K. Bhatt, J.R. Falck, Tetrahedron Lett. 37 (1996) 1421.
- [8] B. Heckmann, C. Miokowski, J.J. Yu, R. Falck, Tetrahedron Lett. 33 (1992) 5201.
 [9] (a) M. Farines, J. Soulier, Bull. Soc. Chim. Fr. (1970) 332;
- (b) N. Chapel, A. Greiner, J.Y. Ortholand, Tetrahedron Lett. 32 (1991) 1441.
- [10] R.R. Ferrett, M.J. Hyde, K.A. Lahti, T.L. Friebe, Tetrahedron Lett. 44 (2003) 2573.
- [11] X. Chaminade, L. Coulombel, S. Olivero, E. Dunach, Eur. J. Org. Chem. (2006) 3554, and references therein.
- [12] A. Ould Amanetoullah, M.M. Chaabouni, A. Baklouti, J. Fluorine Chem. 84 (1997) 149.
 [13] G. Blay, I. Fernandez, B. Monje, M.C. Munoz, J.R. Pedro, C. Vila, Tetrahedron 62
- (2006) 9174. [14] R. Pires, K. Burger, Synthesis (1996) 1277.
- [15] A. Kameyama, Y. Shibuya, H. Kusuoku, Y. Nishizawa, S. Nakano, K. Tatsuta, Tetrahedron Lett. 44 (2003) 2737.
- [16] P.S. Hynes, D. Stranges, P.A. Stupple, A. Guarna, D.J. Dixon, Org. Lett. 9 (2007) 2107.